The World of Biometrics
  DNA Fingerprinting
 
DNA fingerprinting is a technique employed to assist in the identification of individuals on the basis of their respective DNA profiles.

Although 99.9% of human DNA sequences are the same in every person, enough of the DNA is different to distinguish one individual from another. DNA profiling uses repetative ("repeat") sequences that vary a lot, called variable number tandem repeats (VNTR). VNTRs loci are very similar between closely related humans, but so variable that unrelated individuals are extremely unlikely to have the same VNTRs.

The DNA profiling technique was first reported in 1985 by Sir Alec Jeffreys at the University of Leicester in England, and is now the basis of several national DNA databases.


Sampling

Genetics with the extraction of an individual's DNA (typically called a "reference sample"). The most desirable method of collecting a reference sample is the use of a buccal swab, as this reduces the possibility of contamination. When this is not available (eg because a court order may be needed and not obtainable) other methods may need to be used to collect a sample of blood, saliva, semen, or other appropriate fluid or tissue from personal items (e.g. toothbrush, razor, etc) or from stored samples (e.g. banked sperm or biopsy tissue). Samples obtained from blood relatives (biological relative) can provide an indication of an individual's profile, as could human remains which had been previously profiled.

A reference sample is then analysed to create the individual's DNA profile using one of a number of techniques, discussed below. The DNA profile is then compared against another sample to determine whether there is a genetic match.

RFLP

The first methods for finding out genetics used for DNA profiling involved restriction enzyme digestion, followed by Southern blot analysis. Although polymorphisms can exist in the restriction enzyme cleavage sites, more commonly the enzymes and DNA probes were used to analyze VNTR loci. However, the Southern blot technique is laborious, and requires large amounts of undegraded sample DNA. Also, Karl Brown's original technique looked at many minisatellite loci at the same time, increasing the observed variability, but making it hard to discern individual alleles (and thereby precluding parental testing). These early techniques have been supplanted by PCR-based assays.




PCR Analysis

With the invention of the polymerase chain reaction (PCR) technique, DNA profiling took huge strides forward in both discriminating power and the ability to recover information from very small (or degraded) starting samples. PCR greatly amplifies the amounts of a specific region of DNA, using oligonucleotide primers and a thermostable DNA polymerase. Early assays such as the HLA-DQ alpha reverse dot blot strips grew to be very popular due to their ease of use, and the speed with which a result could be obtained. However they were not as discriminating as RFLP. It was also difficult to determine a DNA profile for mixed samples, such as a vaginal swab from a sexual assault victim.

Fortunately, the PCR method is readily adaptable for analyzing VNTR loci. In the United States the FBI has standardized a set of 13 VNTR assays for DNA typing, and has organized the CODIS database for forensic identification in criminal cases. Similar assays and databases have been set up in other countries. Also, commercial kits are available that analyze single nucleotide polymorphisms (SNPs). These kits use PCR to amplify specific regions with known variations and hybridize them to probes anchored on cards, which results in a colored spot corresponding to the particular sequence variation.

STR Analysis

The method of DNA profiling used today is based on PCR and uses short tandem repeats (STR). This method uses highly polymorphic regions that have short repeated sequences of DNA (the most common is 4 bases repeated, but there are other lengths in use, including 3 and 5 bases). Because different unrelated people have different numbers of repeat units, these regions of DNA can be used to discriminate between unrelated individuals. These STR loci (locations) are targeted with sequence-specific primers and are amplified using PCR. The DNA fragments that result are then separated and detected using electrophoresis. There are two common methods of separation and detection, capillary electrophoresis (CE) and gel electrophoresis.

The polymorphisms displayed at each STR region are by themselves very common, typically each polymorphism will be shared by around 5 - 20% of individuals. When looking at multiple loci, it is the unique combination of these polymorphisms to an individual that makes this method discriminating as an identification tool. The more STR regions that are tested in an individual the more discriminating the test becomes.

From country to country, different STR-based DNA-profiling systems are in use. In North America systems which amplify the CODIS 13 core loci are almost universal, while in the UK the SGM+ system, which is compatible with The National DNA Database in use. Whichever system is used, many of the STR regions under test are the same. These DNA-profiling systems are based around multiplex reactions, whereby many STR regions will be under test at the same time.


The true power of STR analysis is in its statistical power of discrimination. In the US, there are 13 core loci (DNA locations) that are currently used for discrimination in CODIS. Because these loci are independently assorted (having a certain number of repeats at one locus doesn't change the likelihood of having any number of repeats at any other locus), the product rule for probabilities can be applied. This means that if someone has the DNA type of ABC, where the three loci were independent, we can say that the probability of having that DNA type is the probability of having type A times the probability of having type B times the probability of having type C. This has resulted in the ability to generate match probabilities of 1 in a quintillion (1 with 18 zeros after it) or more.


Y- Chromosome Analysis

Recent innovations have included the creation of primers targeting polymorphic regions on the Y-chromosome (Y-STR), which allows resolution of a mixed DNA sample from a male and female and/or cases in which a differential extraction is not possible. Y-chromosomes are paternally inherited, so Y-STR analysis can help in the identification of paternally related males. Y-STR analysis was performed in the Sally Hemings controversy to determine if Thomas Jefferson had fathered a son with his slave, Sally Hemings.It was later proved from Y-chromosome analysis of
a male line descendant of Hemings, John Weeks Jefferson's sample that he was a descendant of Thomas Jefferson.


Mitochondrial analysis

For highly degraded samples, it is sometimes impossible to get a complete profile of the 13 CODIS STRs. In these situations, mitochondrial DNA (mtDNA) is sometimes typed due to there being many copies of mtDNA in a cell, while there may only be 1-2 copies of the nuclear DNA. Forensic scientists amplify the HV1 and HV2 regions of the mtDNA, then sequence each region and compare single nucleotide differences to a reference. Because mtDNA is maternally inherited, directly linked maternal relatives can be used as match references, such as one's maternal grandmother's sister's son. A difference of two or more nucleotides is generally considered to be an exclusion. Heteroplasmy and poly-C differences may throw off straight sequence comparisons, so some expertise on the part of the analyst is required. mtDNA is useful in determining unclear identities, such as those of missing persons when a maternally linked relative can be found. mtDNA testing was used in determining that Anna Anderson was not the Russian Princess Anastasia (who was killed along with her family in 1918) as she had claimed to be. (the sample was taken from Prince Philip, the Duke of Edinburgh who is the grandson of Princess Anastasia's mother's sister)


Considerations

When using RFLP, the theoretical risk of a coincidental match is 1 in 100 billion (100,000,000,000), although the practical risk is actually 1 in 1000 because monozygotic twins are 0.2% of the human population. Moreover, the rate of laboratory error is almost certainly higher than this, and often actual laboratory procedures do not reflect the theory under which the coincidence probabilities were computed. For example, the coincidence probabilities may be calculated based o. Recent studies have quoted relatively high error rates which may be cause for concern[. In the early days of genetic fingerprinting, the necessary population data to accurately compute a match probability was sometimes unavailable. Between 1992 and 1996, arbitrary low ceilings were controversially put on match probabilities used in RFLP analysis rather than the higher theoretically computed ones Today, RFLP has become widely disused due to the advent of more discriminating, sensitive and easier technologies.

STRs do not suffer from such subjectivity and provide similar power of discrimination (1 in 10^13 for unrelated individuals if using a full SGM+ profile) It should be noted that figures of this magnitude are not considered to be statistically supportable by scientists in the UK, for unrelated individuals with full matching DNA profiles a match probability of 1 in a billion (one thousand million) is considered statistically supportable (Since 1998 the DNA profiling system supported by The National DNA Database in the UK is the SGM+ DNA profiling system which includes 10 STR regions and a sex indicating test. However, with any DNA technique, the cautious juror should not convict on genetic fingerprint evidence alone if other factors raise doubt. Contamination with other evidence (secondary transfer) is a key source of incorrect DNA profiles and raising doubts as to whether a sample has been adulterated is a favorite defense technique.

It's also possible to use DNA profiling as evidence of genetic relationship, but testing that shows no relationship isn't absolutely certain. While almost all individuals have a single and distinct set of genes, rare individuals, known as "chimeras", have at least two different sets of genes. There have been several cases of DNA profiling that falsely "proved" that a mother was unrelated to her children.

Uses

DNA fingerprints are useful in several applications of human health care research, as well as in the justice system.

Diagnosis of Inherited Disorders
DNA fingerprinting is used to diagnose inherited disorders in both prenatal and newborn babies in hospitals around the world. These disorders may include cystic fibrosis, hemophilia, Huntington's disease, familial Alzheimer's, sickle cell anemia, thalassemia, and many others.

Early detection of such disorders enables the medical staff to prepare themselves and the parents for proper treatment of the child. In some programs, genetic counselors use DNA fingerprint information to help prospective parents understand the risk of having an affected child. In other programs, prospective parents use DNA fingerprint information in their decisions concerning affected pregnancies.

Developing Cures for Inherited Disorders
Research programs to locate inherited disorders on the chromosomes depend on the information contained in DNA fingerprints. By studying the DNA fingerprints of relatives who have a history of some particular disorder, or by comparing large groups of people with and without the disorder, it is possible to identify DNA patterns associated with the disease in question. This work is a necessary first step in designing an eventual genetic cure for these disorders.

Biological Evidence
FBI and police labs around the U.S. have begun to use DNA fingerprints to link suspects to biological evidence - blood or semen stains, hair, or items of clothing - found at the scene of a crime. Since 1987, hundreds of cases have been decided with the assistance of DNA fingerprint evidence.

Another important use of DNA fingerprints in the court system is to establish paternity in custody and child support litigation. In these applications, DNA fingerprints bring an unprecedented, nearly perfect accuracy to the determination.

Personal Identification
Because every organ or tissue of an individual contains the same DNA fingerprint, the U.S. armed services have just begun a program to collect DNA fingerprints from all personnel for use later, in case they are needed to identify casualties or persons missing in action. The DNA method will be far superior to the dogtags, dental records, and blood typing strategies currently in use.
 
  There have been 2748 visitors (4927 hits) to my website already. Welcome to the club! Project by BBT 2-06056  
 
This website was created for free with Own-Free-Website.com. Would you also like to have your own website?
Sign up for free